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AUTOMATED ITEM SELECTION USING ITEM RESPONSE THEORY

Abstract

This paper presents a new heuristic approach to interactive test

assembly that is called the successive item replacement algorithm. This

approach builds on the work of van der Linden (1987a) and van der Linden and

Boekkooi-Timminga (1989) in which methods of mathematical optimization are

combined with Item Response Theory (IRT) to construct tests from larger

collections or pools of items. This new approach is contrasted with two more

formalmodels as well as other heuristic approaches that appear in the

literature. An experiment using quasi realistic data is performed that serves

to illustrate the differences in approaches for typical practical test

construction applications.

Key Words: item response theory, test construction, mathematical programming,

heuristic algorithms.
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Introduction

Test construction -- that is, selecting items from a set of available

items to form a final test -- is a complex process. Until recently this

process had been virtually unassisted by modern psychometrics. Psychometric

developments over the past twenty years have suggested that model-based

measurement models such as Item Response Theory (IRT) could be helpful in the

process. However, the practical use of IRT and the test construction

algorithms suggested by Lord (1980) and Birnbaum (1968) require modern

computers, available only recently. Further, this merging of psychometrics

and computing technology suggests the potential for the integration of

mathematical optimization algorithms into the test construction process, as

exemplified by the work of van der Linden (1987a) and Boekkooi-Timminga

(1989). In these works, some aspect of the items to be selected is optimized

subject to constraints on other item properties. These constraints may

formally incorporate characteristics of items, such as content or type, that

are inportant in test construction.

This paper presents a new heuristic approach to interactive test

assembly that we call the successive item replacement algorithm. This

approach will be contrasted to two elegant mathematical models for interactive

test assembly developed by van der Linden (1987a) and van der Linden and

Boekkooi-Timminga (1989) and to other heuristic approaches that have appeared

in the literature. An experiment using quasi-realistic data is described that

serves to illustrate the advantages of the new algorithm for typical practical

test construction applications.
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Theoretical Framework

A key foundation of the theoretical framework developed by van der

Linden and Boekkooi-Timminga (1989) is the idea that it is adequate to

consider the test information function (Lord, 1980, equation 5-6) at discrete

ability levels. This is a reasonable assumption given that test information

functions are typically relatively smooth and that ability levels can be

chosen to be arbitrarily close to each other.

In the mathematical expression of models in this framework, decision

variables xi, i = 1,...,N, are defined for each item in an N-item pool. These

decision variables take on the values of xi = 0 if the item is excluded from

the test being assembled and xi = 1 if the item is included in the test.. The

basic concept of all models in this framework is to optimize some objective

function of interest subject to linear constraints on the decision variables.

Model 1: Relative Information

This model, due to van der Linden and Boekkooi-Timminga (1989), is used

to build a test with an information function having a predetermined shape but

of unknown height. It is useful in a context in which the location of optimal

measurement is known, but the precision of that optimal reasurement is

unknown. In the language of linear and integer programming algorithms, it is

a maximin model, that is, it seeks to maximize some minimum test information

at selected locations on the ability continuum.

Let i = 1,...,N index the items in the item pool,

Ok, k = 1,...,K be the K values of B at which the test

information function, or item information functions, are

evaluated,
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rk, k = 1,...,K be the relative desired height of the target test

information function.

Then the relative information optimization model is

Maximize y

subject to the constraints

N

E ricooxi rk y> 0, k = 1, . . . ,K ,
i ,.1

N

E xi =n ,

xi e (0,1) , and

y 0 ,

(1)

(2)

(3)

(4)

(5)

where n is the desired number of items in the test.

The variable y in equation 1 is a mechanism used in both maximin and

minimax problems. Its role in the current formulation can be more easily seen

if we rewrite equation 2 as

N

E (ri(ek) xi) /rk - 0 , k = 1, . . . ,K .

In this form, y can be viewed as the minimum of the weighted sums of decision

variables. The xi = 1 are selected so that this minimum is maximized, hence

the name "maximin."

Additional linear constraints on the optimization problem can be

incorporated easily into this mathematical framework. One kind of constraint

C)
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may be called a categorical or set constraint. Items may be considered as

having or not having the feature which defines a particular category or set.

This type of constraint is expressed as

a 5 E
icy

x < (6)

The (a,b) are the (lower, upper) bounds on the constraint, that is, the bounds

on the number of items from a category, and Vi is the set of items in the pool

with feature or characteristic j.

A second type of constraint is noncategorical. This is used for items

having some feature of interest that is most easily expressed as a number

rather than as category or set membership. For noncategorical constraints of

interest, the formulation is

N

a 5 E iixi < b ,

i.1
(7)

where 1i is the property of interest associated with item 1, and (a,b) are the

(lower,upper) bounds on the total amount of this property desired in the test.

Optimization problems such as these, where the function to be optimized

as well as all constraints are linear, are typically solved by linear or

integer programming methods (see, for example, Fletcher, 1987). These methods

seek the global (vs. local) optimum of the function in the space defined by

the decision variables and the constraints. Integer programming methods

require that the decision variables take on only integer values; linear

programming methods allow decision variables to take on any (usually positive)
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real values. This is the direction currently being followed by most

researchers.

Model 2: Absolute Information

In many test construction environments, there is typically no myst3ry

about the desired properties of test forms under construction; in many testing

programs, new editions of a test are constructed to be as parallel as possible

to previous editions. In fact, test information functions can be computed and

averaged for all older editions of a test, thus giving an absolute target test

information function for new test editions. A second model developed by van

der Linden (1987b) seems more relevant to this environment. In this model we

have

and

Minimize y (1')

subject to the constraints

N

Ii(9) Xi- I(Ok) k = 1,...,K ,

i-1

N

E ri(ek) Xi ?_ I(ek), k =1,...,K ,

(2')

(2")

where I(Ok) are the k values of the target information function. In this

formulation, y is the maximum positive deviation from the target. Equation

2" guarantees that the target is met at all values of 8k , but adds K more

constraints to the problem. The other constraints contained in equations 3, 4

and 5, plus any additional constraints on test content, are added to this

model in the same manner as before.
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Heuristic Approaches

While the search for a global optimum seems mathematically elegant, it

appears reasonable to question whether the search for a global optimum is

necessary. Test development specialists concentrate on meeting various

constraints placed on their selection of items to include in test editions.

In their work they do not search for the optimum set of items, but rather seek

to find any set that satisfies these constraints. It seems reasonable to

propose that any algorithmic test construction process perform in a similar

way.

This conclusion has clearly been reached by Adema (1988) in his

concentration on heuristics to improve integer programming algorithms. In his

proposed algorithms he is satisfied with locally optimum solutions that are

within a known percentage of the first noninteger solution. A problem with

this approach is that it may result in no solution at all. Adema (1989) also

investigates other improvements in standard branch and bound algorithms used

to solve problems in integer programming.

Boekkooi-Timminga (1988, 1989) takes a slightly different approach in

which the available item pool is subdivided into clusters with identical

statistical properties as well as identical content classifications. This

approach works well when the number of item classifications is small, but

becomes unrealistic when the number is large, as well as when models more

complex than the 1-parameter logistic (1PL) are required to adequately

dPscribe the item response functions.

Ackerman (1989) takes a very different approach -- one that is

particularly appropriate for the construction of multiple parallel tests. He

considers two factors: the desired number of items per content area, and the

11
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difference between an absolute target information function and the

instantaneous test information for each test as it is being constructed. To

select an item he determines the test and the 0 at which deviation from the

target is greatest, and then chooses the most informative item at that 6 for

a content area not yet filled for that test. This process is repeated until

all content requirements are met. Several refinements to the basic algorithm

are used to further minimize any information differences among the multiple

tests.

Ackerman's results are promising. While the algorithm considers only

information and the number of items per content area, it clearly could be

extended to control for other kinds of constraints.

Webb (1969) adopted an approach that is similar, but within the confines

of classical item statistics. His algorithm considers two statistical

properties, difficulty (as measured by the item delta) and discrimination (as

measured by the item r-biserial), and a set of content classifications. For

each content category he computes, for each item, a weighted linear

combination of content and statistical terms that reflect the degree to which

the item satisfies the test requirements and the difficulty of fulfilling

those requirements. This novel addition forces the algorithm to focus on

those test requirements which are most difficult to meet, just as a human test

developer would. After selecting the most satisfactory item he modifies the

test requirements to reflect their partial fulfillment by selection of that

item. The process is repeated until the desired number of items for the

content category have been selected, and then repeats for each of the other

content categories.
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When implemented almost twenty years ago, the Webb algorithm worked well

in practice, though its implementation suffered from the lack of an

appropriate technology for making it interactive. Its particular appeal is

that it seeks multiple goals (i.e., both content and statistical properties)

simultaneously, and at the same time gives the test developer some control,

through the weightings, over the relative importance of particular. factors.

Successive Item Replacement Algorithm

The approach we have developed is a blend of the simplicity and

flexibility of the Ackerman and Webb heuristics with the elegant mathematical

approach developed by van der Linden and his associates. It is motivated by

our failure to achieve satisfactory solutions with the van der Linden

approach, while only partially solving the problem of excessive computer time

through its various extensions (more on these topics below). These results

led us to rethink our purposes.

In some sense, we are less concerned with maximizing test information,

or even meeting all of the constraints of interest, than we are with coming

"as close as possible" to all constraints simultaneously. Phrased another

way, we would rather miss on two or three constraints, but come very close,

than meet all but one constraint but miss that one by a large margin.

This is generally, but not universally, true. Some constraints are very

important and we would rather sacrifice others for them. For example, if we

want a reading test to contain exactly one science passage we would probably

not be tolerant of an assembly that yielded two, or none.

These considerations suggest that we need to think of "constraints",

including conformance to upper and/or lower target information functions, as

more "desired properties" than true constraints. We want to recognize the

.13
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possibility of failing to meet these desired properties, but we also want to

minimize our aggregate failures. And, in some sense, if we miss on a

constraint then the extent to which we miss it matters, in a roughly linear

way (e.g., missing by two items is twice as bad as missing by one).

Moreover, we want to control the importance of individual constraints by

weighting them. If one constraint is twice as Lzportant as another then its

weight in determining the appropriateness of an individual item s'ould be

double that of the other.

These considerations led us to reformulate our goal in very simple

terms: minimize the weighted sum of deviations from the constraints. We

retain the van der Linden model for expressing constraints, except that we now

consider conformance to the target information function as a set of

constraints like any other, rather than as an objective function to be

minimized or maximized. Thus, linear constraints are formulated as bounds on

the number of items having specified properties. The target information

function constraint is expressed as lower and upper bounds on information at

the desired set of O's. The complete model is formulated as follows:

Minimize

n m.2K

E E wjdijj1

subject to

N

E Ii(6k)Xi k = 1, . . . ,K ,i1

N

E Ii(9k)xi 5 Iu(Ok), k s 1, . . . ,K ,
11

(8)

(9)

(10)
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N

E aiixi Li, j = 1, ... ,m ,

N

Ea xi < j 1,...,m,
11

.N

E xi = n
i ..1

(12)

(13)

xi E (0,1), i = 1,...,N , (14)

where m is the number of linear constraints; m + 2K is the total number of

constraints to be considered; the wi are the weights to be applied to each

constraint; the IL(4) and 1.11(4) are the set of lower and upper target

information values, respectively; the Li and Vi are the lower and upper bounds

on the linear constraints, respectively; and the aii are 1 if item i has

property j, else 0. The dii are defined as follows:

or

or

or

N

dij = IL(0k) - E (lower targets),

N

dij = 1: Ii(9k)Xi - Iu(6k) k 0 (upper targets),
i1

N

di = - E aiixi k 0 (lower bounds on linear constraints),
i -i

N

dij = 1: aij xi - Vj > 0 (upper bounds on linear constraints).
i.1

lu



Note that each of these terms are taken as zero as soon as the relevant

constraint is met.

The algorithm that implements this model consists of two phases. In the

first phase we successively select items so as to minimize the weighted sum of

deviations (dii's). That is, for each item in the pool -I compute the

weighted sum of deviations from the bounds that would apply if this item were

added to the test. We then choose the item with the smallest weighted sum of

deviations and add it to the test.

Once n items have been selected we enter a replacement phase. After the

(n + 1)st item is added, we compute for each item now in the test the weighted

sum of deviations from the bounds that would apply if this item were removed

from the test. We then choose the item with the smallest weighted sum of

deviations -- that is, the one whose removal will most improve the test -- and

remove it. A new (n + 1)st item is then selected and all items are again

examined for possible removal. This process is continued until no further

improvement is possible.

A Realistic Experiment

An experiment was designed and carried out to compare the behavior of

both the relative and absolute information models and the successive item

replacement algorithm. To obtain the most informative comparison possible,

the experiment mimics current test construction practices at Educational

Testing Service (ETS) and uses quasi-realistic data.

Current Test Assembly Practices at ETS

Test construction practices at ETS are the result of over forty years of

experience in this field. Typically, unique test specifications exist for a

particular test that include the consideration of both content and statistical

1k
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properties of items. Test construction specialists use these unique

specifications to produce different editions of a test that are as parallel to

each other as possible in all of the dimensions that are considered important

for the test.

In addition to unique test specifications there exist more general

specifications incorporating good test construction practices that apply to a

large class of tests. These more general specifications are considered by

test development specialists to be at least as important as the unique test

specifications. Their applications, however, may be more idiosyncratic, thus

making parallelism between different test editions even more difficult to

achieve. A side benefit of the more automatic test assembly algorithms

considered in this paper is the codification and implementation of the same

set of unique and general constraints for all parallel test editions.

Table 1 displays an example of the complete (that is, both the unique

and the general) test specifications for a particular 25-item ETS test. Each

of the 25 items in this test consists of a single sentence in which a portion

representing a particular construction (writing problem) in English has been

underlined. The examinee is asked to consider the underlined portion and to

determine if a better construction exists among the options presented.

Insert Table 1 about here

In Table 1, all but the fourth specification represent categorical

constraints. The first specification stipulates that items should come from a

variety of item writers. It is thought that a test containing items from only

one or two item writers would appear unpleasantly uniform, since item writers
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tend to develop a distinctive style. The second specification is that the

location of the correct answer must appear in each possible position with

about the same frequency. This specification prevents examinees when they do

not know the correct answer from always marking an answer choice in a

particular position and hence being unfairly advantaged over other examinees

who also do not know the correct answer.

The underlined portion of the item may appear at the beginning, middle,

or end of the sentence, or may include the entire sentence. Test development

specialists feel that a balance of these positions across the items in the

test prevents the test from appearing too uniform; thus, we have the third

specification. The noncategorical specification four requires that the

sentences be roughly the same length. Specification five stipulates that the

majority of sentences should be simple sentences, with complex, compound, and

compound/complex sentences represented with roughly equal frequency.

Specification six balances the subject matter of the sentences, again for the

sake of a reasonable balance.

Specification seven in Table 1 considers the various types of writing

problems presented in both the sentence and each of the answer choices. No

particular type of writing problem is allowed to dominate. Note that for this

specification, the classification of items is not mutually exclusive. That

is, the sentence may represent an agreement problem, while the answer choices

may represent problems in grammatical construction, rhetorical construction,

diction, idiom, etc.

represents a mutually

specification five, a

compound/complex.

In contrast, each of the specifications one through six

exclusive classifications of items. For example, for

sentence is either simple, complex, compound, or
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Each category of a specification in Table 1 contributes a constraint to

the optimization problem. Thus each item writer, each correct answer

position, each underlined portion position, etc., is a separate constraint.

If we assume that there are 10 different item writers and all items have five

choices, Table 1 specifies 42 constraints on the test assembly process. If we

add to that list the constraint on the total number of items in the test

(equation 3) and decide to evaluate the relative height of the test

information at four different abilities (K 4 in equation 2), then the

optimization problem for van der Linden's relative information model (Model

1), for example, has a total of 47 constraints.

The Data

A pool of 480 writing items from which the above test is typically built

was obtained. Each item had already been calibrated using the 3-parameter

logistic (3PL) item response model and the computer program LOGIST (Wingersky,

1983). These items and their estimated parameters are typical of the items

that exist in pools for this particular testing program. The average test

information function for five previous editions of this test is shown as the

bottom curve in Figure 3.

Item characteristics displayed in Table 1, such as item writer, position

of correct answer, sentence length, etc., were assigned to the 480 items at

random. It would have been better, of course, to use real item properties.

However, easy mechanisms did not exist at the time to obtain information about

these properties. To the extent that such item characteristics are correlated

with each other and with the estimated item parameters, this set of test data

is unrealistic.

1 5
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Results for the Relative Information Model (Model 1)

It was decided to try to build a 25-item test from the 480-item pool

that had the same relative height of information as previous test editions at

four different abilities, 0 -1, 0, .5, and +1. The results of these

attempts are shown in Figure 1 and Table 2. In Figure 1, the horizontal axis

is ability; the vertical axis is test information. The dashed lines in Figure

1 are various information functions that exhibit the target relative values of

information, that is, the desired shape of the information function, at the

four abilities of interest. These are the criteria against which the results

should be compared. Any number of these criterion information functions could

be drawn, but only three are shown for clarity. The solid lines in Figure 1,

each with different plotting symbols at the four ability values, are the test

information functions that resulted from five attempts to apply the standard

methods of linear and integer programming. None of these five attempts

produced an information function with the same shape as the target relative

information.

Insert Figure 1 and Table 2 about here

Integer programming, that is, methods of solving optimization problems

in which the decision variables are constrained to be integer, are methods of

searching the functional space for all possible integer solutions and then

choosing as the correct one that which optimizes the function in question.

These methods typically implement some form of a "branch and bound" algorithm

in conjunction with more straightforward linear programming algorithms in

which the decision variables can take on any integer or noninteger values to

4,0
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solve the linear subproblems (see Fletcher, 1987). In this experiment the

revised simplex method for solving the linear subproblems was used as

implemented in the IMSL (1989) subroutine library and the branch and bound

algorithm was from Fletcher (1987, Chapter 13).

Integer programming problems with a large number of decision variables,

as we have here, and a large number of constraints, as we also have here, are

typically very difficult to solve in realistic amounts of computer time. Thus

five different heuristic approaches to a solution were tried, some of which

were recommended by van der Linden and Boekkooi-Timminga (1989). The five

methods were c..s follows:

Method 1: Crude linear rounding

In this method, only the solution to the initial "relaxed" problem

is obtained. The decision variables are allowed to take on noninteger values

between zero and one, and the results are rounded to zero or one. This method

is not guaranteed to find an integer solution that is-optimum or even one that

satisfies all of the constraints.

Method 2: Improved linear rounding

This method is similar to Method 1, but the method of rounding is

different. Here, the decision variables are sorted in descending order and

the first n of them are rounded to one, where n is the desired number of

items. Like the first method, this method does not guarantee an optimum

solution satisfying all constraints.

Method 3: Optimal rounding

This method obtains the relaxed linear solution and then reduces

the solution space of the problem by fixing at zero or one any decision

variables that had attained these values. The next stage then seeks the
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optimum integer solution in this reduced space. Like the first two methods,

this method does not guarantee an optimum solution to the original problem

satisfying all constraints.

Method 4: First zero-one solution

In the process of finding the global solution, branch and bound

algorithms consider and discard many local solutions. The notation "first 0-1

solution" indicates that this procedure was stopped after the first integer

solution. This method is guaranteed to produce a solution that satisfies all

constraints (if one exists), but it is probably not an optimum solution.

Method 5: Second zero-one solution

The procedure for finding the global optimum was stopped after the

second integer solution was found. As in stopping after the first integer

solution, constraint satisfaction is guaranteed, but the function is unlikely

to be optimum.

Information about the five attempts is shown in Table 2. The simplest

attempt, crude linear rounding (Method 1), is the fastest in terms of computer

timer, but resulted in a test that was longer than 25 items, and which

violated one of the constraints. Improved linear rounding (Method 2) violated

three constraints and was slightly more demanding in terms of CPU time than

Method 1. Optimal rounding (Method 3) satisfied all constraints but failed to

produce a very close approximation to the desired relative shape.

The first zero-one solution (Method 4) produced results similar to that

of optimal rounding, but took about 30 times as long in terms of computer

time. The second zero-one solution (Method 5) produced a test information

1All times shown here and in Tables 2 and 3 are based on an IBM 3090-300S
running at 57 MIPS.
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function that most closely matched the desired shape. However, this method

took far too long (20 CPU minutes) to be practical. Note that none of the

methods tried produced he globally optimal solution. Based on the times

required to find only the first two integer solutions, it seems certain that

the conventional methodology for solving integer programming problems is

unlikely to work in these circumstances.

Results for the Absolute Information Model (Model 2)

The same data as previously described were used for trying out van der

Linden's absolute information model (Model 2). Only the results for crude

linear rounding (Method 1), optimal rounding (Method 3), and first zero-one

solution (Method 4) are reported. Improved linear rounding (Method 2)

produced results identical with Method 1. The second zero-one solution

(Method 5) was attempted but ran out of computer time after 20 CPU minutes

without finding the second zero-one solution. The results are shown in Figure

2 and Table 3. In Figure 2, the target test information function at the four

abilities of interest is show by a dashed line. The results of the three

methods are shown by solid lines. The simplest method, crude linear rounding,

produced a test information function slightly above the target, but violated 7

constraints. Optimal rounding violated 6 constraints and failed to produce a

test information function that met the target. The first zero-one solution

exceeded the target at all points and met all of the constraints, but took

slightly over 60 times as long as crude linear rounding to produce a solution.

Insert Figure 2 and Table 3 about here

4t)
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It is clear that the attempts to find strictly globally optimal

solutions to either the relative or absolute information models with these

data are unsuccessful. It is also clear that continuing along this line of

inquiry does not hold much promise. The best, locally optimal solution found

in the case of the relative information model (second zero-one solution) took

over 20 CPU minutes; the best locally optimal solution found in the case of

the absolute information model took.over 2 CPU minutes.

Results for the Successive Item Replacement Algorithm

The successive item replacement algorithm was implemented and tried out

with the same data with one addition: Because we wished to include an upper

target information function as well as a lower one, four additional

constraints were added bringing the total to 51 constraints. The upper target

information constraints correspond to a value of 1.2 times the lower target at

each Ok.

Insert Figure 3 about here

The results were quite promising. Figure 3 shows the resulting test

information (solid line) plotted against the upper and lower target curves

(dashed lines) at the four abilities of interest. The targets were

comfortably met at all Vs. All except one of the linear constraints were

met, and that constraint failed by one item. Close examination of the data

shows that this constraint in combination with related ones is exceedingly
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difficult to meet. CPU time was approximately 0.8 seconds.2 This compares

favorably with the data shown in Tables 2 and 3, especially since the number

of constraints on test information was doubled (in fact, adjusting for that

difference,would reduce the time to approximately two-thirds of a second).

Discussion. Extensions and Future Research

The implementation of the successive item replacement algorithm allowed

us to overcome the limitations of implementations of the van der Linden models

and proceed with experiments on the use of interactive item selection methods

in a realistic setting. The consideration of constraints as more "desired

properties" rather than true constraints, and the minimization of our

aggregate failure to achieve the desired properties, provide needed

flexibility in practical problems. The facility to treat all constraints

equivalently mathematically, but to allow differential weighting to reflect

relative importance in the test construction process, provides additional

desirable features. There are a number of extensions to the basic algorithm

that are important to its further practical use in test development.

The most important extension deals with item sets. Item sets occur when

a group of items is associated with a single stimulus, as for example with a

reading passage followed by questions about the passage. Test developers

typically have certain constraints that apply to the stimulus (e.g., "exactly

one science passage"; "no more than two passages with gender appeal"; etc.),

while other constraints, including the statistical ones, apply to individual

items or to the test as a whole. They typically select the passages first,

2The algorithm was actually implemented on an IBM-compatible 386 PC
running at 16 mz and took 14 seconds. This translates to approximately 0.8
seconds on the 3090.
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hoping they will be able to meet item and test constraints from the items

associated with those passages.

One approach to the problem of item sets is to mimic this process:

select the stimuli according to the stimulus constraints, and then select

items from the reduced item pool. This approach suffers from the obvious risk

that item and test constraints will not be met because of inadequacies in the

reduced pool. The approach we adopted was to explicitly incorporate

simultaneous set and item selection into the algorithm. As each item is

considered for selection, the program determines whether selection of the item

would "bring in" its parent stimulus (i.e., does it have a stimulus and, if

so, has it already been included because

relevant set constraints are then tested

the weighted sum of deviations. If more

constraint will be included in the test,

of a prior item selection?). Any

and considered in the computation of

than one set corresponding to a set

then the algorithm also attempts to

automatically balance (i.e., make approximately equal) the number of items

selected from each set.

A second extension to the basic algorithm allows it to consider

constraints on conventional (as opposed to IRT) item statistics. This is done

by forming desired frequency distributions for deltas and r-biseri.Als, and

constraining the number of items that may be chosen from each interval in the

distribution. No change to the program that implements the algorithm is

actually needed, since these constraints are -- like all other linear

constraints -- merely bounds on the number of items having specified

properties.

Another by-product of the underlying methodology is the easy ability to

incorporate non-linear constraints (for example, an upper and lower bound on
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the standard deviation of the item difficulties or discrimination parameters).

These could be included by performing the necessary coMputations as each item

is considered and, again, measuring the deviation from the specified bounds.

Another future extension of this work is to correct for a potential

problem that is similar to (but not identical with) a phenomenon noted by

Ackerman. Because we are indifferent about where between the lower and upper

target functions the solution falls, the resulting information function is

allowed to have "bumps" -- that is, its first derivative changes sign more

than once. In our case this problem is bounded (by the upper and lower target

bounds), but nonetheless potentially troubling. It could be easily corrected

by adding a (non-linear) constraint on the number of these sign changes.

A final extension is to apply this algorithm in the context of

computerized adaptive testing. Most current algorithms for implementing

adaptive testing (see, for example, Lord (1980), Chapter 10) control the

content of an adaptive test through the means of tables specifying the

features of the items to be administered. That is, a table is constructed

that directs that the first item to be administered to all examinees should

have one particular feature, the second item should have another feature, and

so forth.

well when

structure

different

This arrangement of tables to control adaptive test content

the content structure is relatively simple.

is complex, that is, each new item selected

constraints

If the content

works

is subject to many

in addition to constraints on its statistical

properties, the table mechanism may become difficult, if not impossible, to

implement. The algorithm proposed here may provide the required flexibility

in the adaptive testing context also and research on this possibility is

currently underway.

2
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We believe that the algorithm has great potential for operational test

assembly. The algorithm appears promising for immediate use by large-scale

testing programs that produce parallel forms for mass administration, using

predetermined content and statistical specifications, similar to the program

that was the source of the data for this experiment. In addition, more

innovative test assembly procedures, like the generation of multiple parallel

forms that are computer-assembled and delivered at the convenience of the

user, are compatible with the abilities of the algorithm to build test

editions that simultaneously satisfy numerous constraints.
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Table 1: Complete Specifications for a 25-Item Test of Written English.

1. No more than 5 items from any author. For example,

Author Number of items
Jones 0 - 5

Smith 0 - 5

etc.

2. The correct answer must appear in each possible position roughly an equal
number of times. For 5-choice items, this might appear as

Position Number of items
1 3 - 7

2 3 - 7

3 3 - 7

4 3 - 7

5 3 7

3. The position of the underlined portion of the sentence must appear with
roughly equal frequency. For example,

Position Number of items
beginning 5 - 9

middle 5 - 9

end 5 - 9

all 5 - 9

4. The average sentence length must be between 2.5 and 3.5 printed lines.
5. The type of sentence must be balanced. For example,

Type Number of items
simple 12 - 14
complex 3 - 5

compound 3 - 5

compound/complex 3 - 5

6. The subject matter must be balanced in detail. For example
Subject Number of items
business 8 - 13

domestic politics 0 - 2

earth science 0 - 2

health science 0 - 2

humanities 0 - 2

natural science 0 - 2

social science 0 - 2

technical 0 - 2

world affairs 0 - 2

7. Writing problems must be balanced. For example,
Writing Problem Number of items
agreement 3 - 7

grammatical construction 3 - 7

rhetorical construction 3 7

diction 3 7

idiom 3 7

logical predicate 3 7

negation 3 7

parallelism 3 7

verb form 3 7
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Table 2: Five Programming Methods Applied to Solve
the Relative Information Model With
Realistic Test Data.

Final Test Information at Constraints
Method]. 0--1 0-0 9 -.5 9 -1 Satisfied?

Method 1 4.138 6.941 6.650 4.938 No: n and 1
range constraint

Method 2 4.139 6.955 6.715 5.154 No: 3 range
constraints

Method 3 3.391 6.326 6.318 5.078 Yes

Method 4 3.747 5.917 5.911 4.716 Yes

Method 5 3.896 5.399 5.521 4.743 Yes

CPU
Seconds?

3.78

4.06

4.59

137.02

1 1200.35

1 Method 1:
Method 2:
Method 3:
Method 4:
Method 5:

Single linear solution, crude rounding of decision variables.
Single linear solution, improved rounding of decision variables.
Single linear solution, optimal rounding of decision variables.
First integer solution.
Second integer solution.

2 The CPU was
well as absol

a very fast IBM Model 3090-300S mainframe. Relative times as
ute times are important in the comparison.
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Table 3: Three Programming Methods Applied to Solve
the Absolute Information Model With
Realistic Test Data.

Methods
Final Test Information at

8--1 8-0 9 .5 9 -1

Constraints
Satisfied?

CPU
Seconds2

(2.80)3 (3.50) (3.60) (3.40)

Method 1 2.82 3.52 3.63 3.46 No: 7 range
constraints

2.04

Method 3 2.78 3.30 3.35 3.30 No: 6 range 4.52
constraints

Method 4 2.90 3.71 3.87 3.68 Yes 122.26

1 Method 1: Single linear solution, crude rounding of decision variables.
Method 3: Single linear solution, optimal rounding of decision variables.
Method 4: First integer solution.

2 The CPU was a very fast IBM Model 3090-300S mainframe. Relative times as
well as absolute times are important in the comparison.

3 Values of the target information function are listed in parentheses.
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Figure 2. Three methods to solve the absolute information model with
realistic simulated data.




